1

Please let me (Saul) know if any of the problems are unclear or have typos. Please turn in Exercise 1.7 (via Moodle) by noon on Friday of week three (2025-01-24).

Exercise 1.1. Let $H_3(\mathbb{Z})$ be the set of three-by-three upper triangular integer matrices with all diagonal entries equal to one. Show that $H_3(\mathbb{Z})$, with the usual matrix multiplication, is a group. Give explicit formulas, in the given coordinates, for inversion and multiplication.

Exercise 1.2. Define NIL = $\mathbb{Z}^2 \rtimes_{\phi} \mathbb{Z}$ to be the semi-direct product where the group \mathbb{Z} acts on the group \mathbb{Z}^2 via

$$\phi_n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$$

Prove that NIL is isomorphic to $H_3(\mathbb{Z})$ by giving an explicit isomorphism.

Exercise 1.3. Suppose that U_n is the group of n^{th} roots of unity. Suppose that D_{2n} is the dihedral group of order 2n. Prove that D_{2n} is isomorphic to $U_n \rtimes U_2$ where the latter acts on the former by inversion.

Exercise 1.4. Find all actions of \mathbb{Z} on the following:

- the metric space \mathbb{R} , where $d_{\mathbb{R}}(x,y) = |x-y|$
- the vector space \mathbb{R} (over the field \mathbb{R})
- the (connected) graph \mathbb{R} , having countably many vertices all of of degree two.

(Morally, this is the same as computing the automorphism group in each case.)

Exercise 1.5. Let $S = \{0, 1\}$. So the elements of S^* are binary strings. Count the following:

- the binary strings of length n
- ullet the binary strings of length at most n
- the binary strings of length n without 11 as a subword
- \bullet [Harder.] the binary strings of length n without 111 as a subword

Exercise 1.6. Prove the *periodicity lemma*: Suppose that S is a set. Suppose that u and v are words over S with u * v = v * u. Then there is a word w over S, and integers p and q, so that $u = w^p$ and $v = w^q$.

Exercise 1.7. Prove the *cancellation lemma* (for the free groups): Suppose that S is a set. Suppose that u and v are elements of the free group F(S), thus are reduced words. Prove that there are elements u', v', and w of F(S) so that

$$u = u' * w$$
 $v = w^{-1} * v'$ $u \cdot v = u' * v'$

(It follows that u', v', and w are the unique such.)

2025-01-27

Exercise 1.8. Suppose that S is a set.

- Prove that the free group F(S) is commutative if and only if |S| = 1.
- Prove that F(S) has no non-trivial torsion.
- [Challenge.] Prove that all subgroups of F(S) are isomorphic to free groups. (Start with the finitely generated subgroups.)

Exercise 1.9. Let \mathbb{Z}^m be the free commutative group of rank m.

- Prove that \mathbb{Z}^m has no non-trivial torsion.
- Prove that $\mathbb{Z}^m \cong \mathbb{Z}^n$ if and only if m = n. (This justifies the name "rank".)
- Prove that \mathbb{Z}^m surjects \mathbb{Z}^n if and only if $m \geq n$.
- Prove that all subgroups of \mathbb{Z}^m are finitely generated.
- Prove that all subgroups of \mathbb{Z}^m are isomorphic to free commutative groups and have rank at most m.

2025-01-27