2025-02-04 LECTURE 13 SAUL SCHLETMER MANHY

1 TRYING AGAIN, WITH BETTER NOTATION.

G A GROMP, S.T FIN. GEN SETS. DEFINE I'S = I'(S).

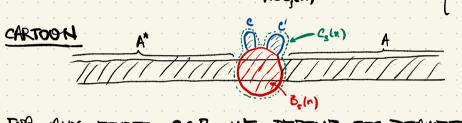
 $B_8(n) = \{q \in G \mid |q|_s \leq n^{\frac{n}{2}} \text{ THE } n\text{-BALL}: \text{NOTE IT CONTAINS}$ THE "SPHERE" of RADIUS n.

DEFINE ES (M) TO BE THE SET OF INF. CONN. COMPONENTS OF (S-BS (M). DEFINE (T, BT (M), ET (M) SIMILALY.

IT WILL BE USEFUL TO "STORE" THE FINITE CONN. COMPTS

of $\Gamma_S - B_S(n)$ ALONG WITH THE BALL. THAT IS

DEFINE: $C_S(n) = \Gamma_S - U A = B_n(S) \cup \begin{cases} FINITE (DIN) \\ COMPTS of \\ \Gamma_S - B_S(n) \end{cases}$



FOR ANY FINITE CCT; WE DEFINE ITS DIAMETER
PLAM(C) = MAX {d_s|q,h) | q,h + C }.

(SECOND ATTEMPT)

SET C= MAX { ISL, SES } RECALL 19 H = C.1915

D = MAX { Itls: teT } 19 15 < D.1917

RECALL AS WELL THAT IS, IT HAVE THE SAME VEPTICES.

LEMMA: FIX X & IN AND Y > CX + C.D. THEN INCLUSION INDUCES A SURTECTION 1: E, (Y) -> E, (X).

PROOF: FIX ACE (I) NOTE A-B, (I) IS INFINITE AND E, (I) IS FINITE SO AND IS INFINITE FOR SOME BEE, (I). WE NOW MUST SHOW THAT THE VERTICES of B LIE IN A. 80, FIX ANY

HE ANB. SUPPOSE (N, N') IS ANY ADJACENT EDGE OF B. SO d_ (h,h')=1. THUS ds(h,h') &D. FIX AN EDGE PATH & FROM IN TO IN TO WITH WIED. CLAIM: WCA PICTURE PROOF: SINCE A IS CONNECTED,

AND HEA, IT SUFFICES TO SHOW

FOR EACH VERTEX GEOL, THAT

Q&B_(X). 80, SUPPOSE FOR A CONTRACTION THAT SOME ged LIES IN $B_s(X)$. So $d_s(1,g) \leq X$. NOTE $d_s(g,h) \leq D$ because |a| < D. THUS d((1,h) < I+D. SO d_ (1,h) ≤ C. I+C.D. THUS he B_(Y) AND 80 h&B. THIS IS THE CONTRADICION proving the cuain. THUS h' A. SINCE B IS CONNECTED, INDUCTION PROVES THAT THE VERTICES of B ARE CONTAINED IN A. 80

THUS $h' \in A$. SINCE B IS CONNECTED, INDUCTION PROVES

THAT THE VERTICES OF B ARE CONTAINED IN A. SO $C: \mathcal{E}_{r}(\mathcal{I}) \longrightarrow \mathcal{E}_{r}(\mathcal{I})$ IS WELL-DEFINED AND SUBJECTIVE. I

COROLLART: $e(G,S) = \lim_{n \to \infty} eARD(\mathcal{E}_{s}(n))$ Is WELL DEF.

PROOF: TAKE S = T, HOTE C = D = 1, AND THAT e:X + c:D = 1

SO CARD ($E_s(n)$) IS NON-DECREASING.

CORDLARY: e(G,S) = e(G,T).

PROOF: e(G,T) > e(G,S) AND e(G,S) > e(G,T) BY HEMMA D

= X+1. So $E_s(X+1) \longrightarrow E_s(X)$ surtects by Lemma.

EXERCISE: SUPPOSE H < G IS FINITE INDEX. THEN e(4) = e(4).

(3) SET of ENDS. WITH G.S AS USUAL. DEFINE $R_8 = \{$ GEODESIC RAYS IN Γ_5 $\}$ WE SAY O, $\beta \in R_5$ ARE END-EQUIVALENT IF, FOR ALL n, we have that the infinite components of $\alpha - R_5(n)$ and $\beta - R_5(n)$ lie in the same conn component of $\Gamma_5 - R_5(n)$. WE use $\alpha \neq R_5$ to denote this relation.

EXERCISE: PROVE n is an equiv. Relation.

DEFINE ENDS(GS) = R_5/R_5 , the set of ends of G example: $Z^2 * Z \cong (q,b,c \mid \alpha b a^{-1}b^{-1})$

PICTURE: Z2 * Z = < q,b,c | aba b')

PICTURE: HAVE ONE END FOR EACH

CORR of 712 (COUNTABLY MA

PICTURE:

HAVE ONE END FOR EACH

COPY OF I' (COUNTABLY MANY

A THESE) AND ALSO HAVE

ONE END FOR EACH GEOD RAY (BASED AT 1,) THAT

ONE END FOR EACH GEOD RAY (BASED AT 12) THAT CROSSES THE MANY CORTES OF ZZ (UNCOUNTABLY MANY OF THESE).