Please let me (Saul) know if any of the problems are unclear or have typos.

Exercise 5.1. Suppose that $U \subset \mathbb{C}$ is a domain. We call a contour in U semicircular if it is simple, closed, and its pieces are either line segments or arcs of circles. Suppose that $R \subset U$ is compact, is nonempty, equals the closure of its interior, and has boundary which is a disjoint union of semicircular contours. Then we call R a semicircular region. Give a direct proof that R admits a triangulation.

Exercise 5.2. Suppose that $\gamma: [-\pi/2, \pi/2] \to \mathbb{C}$ is defined by $\gamma(\theta) = \frac{3}{2}(i + e^{i\theta})$.

- a) Sketch γ and indicate its orientation.
- b) Compute the contour integral $\int_{\gamma} \frac{dz}{z-i}$.
- c) Carefully justify your answer, giving labelled sketches as needed.

Exercise 5.3. Recall that Exp: $\mathbb{C} \to \mathbb{C}$ is the complex exponential. For any $z \in \mathbb{C}$ we define:

$$f(z) = \int_0^1 \frac{\text{EXP}(tz) - 1}{t} dt$$

Prove that $f: \mathbb{C} \to \mathbb{C}$ is well-defined. Compute f(0) and f(1) (the latter to five decimal places of accuracy). Prove that f is holomorphic. \diamondsuit

Exercise 5.4. Suppose that $U \subset \mathbb{C}$ is a domain. Suppose that z_0 is a point of U. Suppose that $f, g: U \to \mathbb{C}$ are holomorphic. Recall that $ORD(f, z_0)$ is the order of vanishing of f at z_0 . Prove the following.

- a) $ORD((z-z_0)^N, z_0) = N$ for $N \ge 0$ an integer.
- b) $ORD(f \cdot g, z_0) = ORD(f, z_0) + ORD(g, z_0).$

c)
$$ORD(f+g,z_0) \ge min\{ORD(f,z_0), ORD(g,z_0)\}.$$

Exercise 5.5. Suppose that $U \subset \mathbb{C}$ is a domain. Suppose that $Z \subset U$ is isolated in U. Suppose that $K \subset U$ is compact. Prove that $Z \cap K$ is finite. \diamondsuit

2025-11-11