Please let me (Saul) know if any of the problems are unclear or have typos.

Exercise 2.1. Take $\omega = e^{\pi i/4}$. Define $E \colon \mathbb{C} \to \mathbb{C}$ to be the rotation $E(z) = \omega z$. Define $D \colon \mathbb{C} \to \mathbb{C}$ by $D(z) = 2z/(1-z^2)$. Define $\gamma \colon \mathbb{R} \to \mathbb{C}$ by $\gamma(t) = D(E(t))$. Sketch the image of γ . In your sketch, include the real and imaginary axes, indicate the orientation of γ , and label points of interest (including the images of the integers). [This exercise was inspired by Figure 8 of the article Reflections on the lemniscate of Bernoulli: the forty-eight faces of a mathematical gem by Langer and Singer.]

Exercise 2.2. Suppose that $\gamma \colon [0, 2\pi] \to \mathbb{C}$ is the usual parametrisation of the unit circle: $\gamma(\theta) = e^{i\theta}$. For each function $f \colon \mathbb{C} \to \mathbb{C}$ below, sketch the contour $f \circ \gamma$. In your sketch, include the real and imaginary axes, indicate the orientation of the contour $f \circ \gamma$, and label points of interest (including the images of the multiples of $\pi/2$).

- a) f(z) = z
- b) f(z) = 1/z
- c) $f(z) = 1/z^3$
- d) f(z) = z + 1/z
- e) $f(z) = 1 + z + z^2$
- f) $f(z) = (z^2 + 1)/(z^2 + 2z 1)$
- g) $f(z) = (z^2 + 2z 1)/(z^2 + 1)$
- h) $f(z) = e^{Rz}$ for various real R in [1, 100]. What is happening near the origin? \diamondsuit

Exercise 2.3. Let $G = H \cup V$ be the following grid of segments in the unit square:

$$H = \{z \in \mathbb{C} \mid \text{Real}(z) \in [0, 1], \text{Imag}(z) \in \{0, 1/3, 2/3, 1\}\}$$

$$V = \{z \in \mathbb{C} \mid \text{Imag}(z) \in [0, 1], \text{Real}(z) \in \{0, 1/3, 2/3, 1\}\}$$

For each function $f: \mathbb{C} \to \mathbb{C}$ below, sketch f(G). In your sketch, include the real and imaginary axes, draw f(H) in blue, draw f(V) in red, and label points of interest.

a)
$$f(z) = z^2$$

b)
$$f(z) = z^3$$

c)
$$f(z) = (iz)^3$$

$$d) f(z) = \sqrt{z}$$

e)
$$f(z) = 1/z$$

f)
$$f(z) = e^{2\pi i z}$$

Exercise 2.4. Suppose that $f, g: \mathbb{C} \to \mathbb{C}$ are holomorphic. Prove, directly from the definitions, that f + g, $f \cdot g$, f/g, and $f \circ g$ are holomorphic. (For f/g we must avoid the zeros of g.)

Exercise 2.5. Prove that $f(z) = \bar{z}$ is not holomorphic. Using this, or otherwise, prove that REAL(z), IMAG(z), and $|z|^2$ are not holomorphic.

2025-10-19