

① ALGEBRA TO GEOMETRY

RECALL $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. FIX $w \in \hat{\mathbb{C}}$.

DEFINE: $A_w: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ $A_w(z) = \begin{cases} z+w & z \neq \infty \\ \infty & z = \infty \end{cases}$

$M_w: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ $M_w(z) = \begin{cases} w \cdot z, & z \neq \infty \\ \infty, & z = \infty \end{cases}$

$V: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ $V(z) = \begin{cases} 1/z & z \neq 0, \infty \\ \infty & z = 0 \\ 0 & z = \infty \end{cases}$

EXERCISE: A_w, M_w, V HOMEOMORPHISMS of $\hat{\mathbb{C}}$.

DEF: A FUNCTION $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ IS MEROMORPHIC

IF IT IS MEROMORPHIC ON \mathbb{C} AND, FOR ANY $r > 0$,
 $(f \circ V)|_{B(0; r)}$ IS MEROMORPHIC.

EXERCISE A_w, M_w, V ARE BIMEROMORPHIC.

PROOF: $A_w \circ V = \frac{w}{z}$ IS MEROMORPHIC AT ZERO. ETC. II

DEFINE: $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ IS A CONFORMAL EQUIV
(AUTOMORPHISM) IF f IS BIMEROMORPHIC.

SO: $f(z) = \frac{z+i}{iz+1}$ IS BIMEROMORPHIC ON $\hat{\mathbb{C}}$.

$f(z) = \exp(z)$ IS NOT [ESS. SING. AT ∞ !]

DEFINE: $\text{AUT}(\hat{\mathbb{C}}) = \{f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \mid f \text{ BIMEROMORPHIC}\}$

SO $A_w, M_w, V \in \text{AUT}(\hat{\mathbb{C}})$. BUT $z \mapsto z^2$ IS NOT.

② LEMMA: SUPPOSE $a, b, c, d \in \mathbb{C}$ WITH $ad - bc \neq 0$.

THEN $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ DEFINED BY $f(z) = \frac{az+b}{cz+d}$

IS AN AUTOMORPHISM OF $\hat{\mathbb{C}}$. FURTHERMORE ALL
HE $\text{AUT}(\hat{\mathbb{C}})$ HAVE THIS FORM.

PROOF: $f(z) = (az+b)/(cz+d)$ HAS INVERSE

$$g(z) = (dz-b)/(-cz+a) \quad [\text{CHECK THIS!}]$$

ALSO $f|_{\mathbb{C}}$ MEROMORPHIC AS IS

$$f \circ V(z) = \frac{a/z+b}{cz+d} = \frac{bz+a}{dz+c}$$

SUPPOSE $f \in \text{AUT}(\hat{\mathbb{C}})$. SUPPOSE $f(\infty) = \infty$. THEN

$f|_{\mathbb{C}}$ IS IN $\text{AUT}(\mathbb{C})$, SO $f \in \text{SIM}(\mathbb{C})$ SO

$$f(z) = az + b = \frac{az+b}{az+1}.$$

SUPPOSE $f(\infty) = p \neq \infty$. DEFINE $g(z) = \frac{1}{z-p}$.

SO $g \circ f \in \text{AUT}(\hat{\mathbb{C}})$ AND $g \circ f$ FIXES ∞ .

SO $g \circ f(z) = cz+d$ WITH $c \neq 0$. SO

$$\frac{1}{f(z)-p} = cz+d \quad \text{THUS} \quad \frac{1}{cz+d} = f(z)-p$$

$$\text{SO } f(z) = p + \frac{1}{cz+d} = \frac{pcz+(pd+1)}{cz+d}$$

NOTE $(pc \cdot d) - (pd+1)c = pcd - pcd - c = -c \neq 0$.

SO f HAS THE DESIRED FORM □

③ THREE-TRANSITIVE

LEMMA: THE ACTION of $\text{AUT}(\hat{\mathbb{C}})$ ON $\hat{\mathbb{C}}$ IS (UNIQUELY) THREE-TRANSITIVE.

PROOF: FIX $u, v, w \in \hat{\mathbb{C}}$ DISTINCT. WE WILL PROVE:
THERE IS A UNIQUE $\varphi \in \text{AUT}(\hat{\mathbb{C}})$ SENDING (u, v, w) TO $(\infty, 0, 1)$ [IN THAT ORDER].

(A) SUPPOSE $u, v, w \neq \infty$. SO $f(z) = \frac{w-u}{w-v} \cdot \frac{z-v}{z-u}$

(B) SUPPOSE $u = \infty$. SO $f(z) = \frac{z-v}{w-v}$

(C) SUPPOSE $v = \infty$ SO $f(z) = \frac{w-u}{z-u}$

(D) SUPPOSE $w = \infty$ SO $f(z) = \frac{z-v}{z-u}$. \square

EXERCISE: LIST ALL $f \in \text{AUT}(\hat{\mathbb{C}})$ FIXING $\{\infty, 0, 1\}$ SETWISE.

[HINT: BY THE ABOVE THERE ARE SIX SUCH]

③ $\text{AUT}(\mathbb{C}^\times)$:

LEMMA $\text{AUT}(\mathbb{C}^\times) = \{M_w, M_w \circ V \mid w \in \mathbb{C}^\times\}$

IN FACT: $\text{AUT}(\mathbb{C}^\times) \cong \mathbb{C}^\times \times \mathbb{Z}/2\mathbb{Z}$

$$\left[(V \circ M_w \circ V)(z) = \frac{1}{w/z} = z/w = M_{1/w}(z) \right]$$

IN FACT: $\text{AUT}(\mathbb{C}^\times) \cong \{f \in \text{AUT}(\hat{\mathbb{C}}) \mid f(\{0, \infty\}) = \{0, \infty\}\}$

STEP!

④ GL(2, C): WE WILL GIVE A DICTIONARY BETWEEN
LFT (LINEAR FRACTIONAL TRANSFORMATIONS)
AND MATRICES. HERE ARE A FEW PAGES.

LFT

$$A_b(z) = z + b$$

MATRIX

$$\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$$

$$M_a(z) = a^2 z$$

$$\begin{pmatrix} a & 0 \\ 0 & 1/a \end{pmatrix}$$

$$Y(z) = 1/z$$

$$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

$$f(z) = \frac{az+b}{cz+d}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

WE START BY DEFINING LOTS OF GROUPS.

⑤ LINEAR GROUPS.

$$(1) \quad GL(2, \mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\} \quad ad - bc \neq 0.$$

GENERAL LINEAR GROUP.

$$(2) \quad SL(2, \mathbb{C}) = \left\{ M \in GL(2, \mathbb{C}) \mid \det(M) = 1 \right\}.$$

SPECIAL LINEAR GROUP.

$$(3) \mathbb{C}^{\times} \cdot \text{Id} = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \mid \lambda \in \mathbb{C}^{\times} \right\}$$

$$(4) \begin{aligned} \text{PGL}(2, \mathbb{C}) &= \text{GL}(2, \mathbb{C}) / \mathbb{C}^{\times} \cdot \text{Id} \\ \text{PSL}(2, \mathbb{C}) &= \text{SL}(2, \mathbb{C}) / \pm \text{Id}. \end{aligned} \quad \left. \begin{array}{l} \text{PROJECTIVISATIONS} \\ \text{of GL, SL.} \end{array} \right\}$$

AND: CAN MAKE SAME DEFNS OVER \mathbb{R} .

$$\left[\text{BUT } \text{PGL}(2, \mathbb{R}) = \text{GL}(2, \mathbb{R}) / \mathbb{R}^{\times} \cdot \text{Id} \right]$$

SO MANY HOMOMORPHISMS:

$$\begin{array}{ccccc} \mathbb{C}^{\times} \cdot \text{Id} & \longrightarrow & \text{GL}(2, \mathbb{C}) & \longrightarrow & \text{PGL}(2, \mathbb{C}) \\ \uparrow \mathbb{R}^{\times} \cdot \text{Id} & \nearrow & \uparrow & \nearrow & \uparrow \\ \mathbb{R}^{\times} \cdot \text{Id} & \longrightarrow & \text{GL}(2, \mathbb{R}) & \longrightarrow & \text{PGL}(2, \mathbb{R}) \\ \uparrow \{\pm \text{Id}\} & \nearrow & \uparrow & \nearrow & \uparrow \\ \{\pm \text{Id}\} & \longrightarrow & \text{SL}(2, \mathbb{C}) & \longrightarrow & \text{PSL}(2, \mathbb{C}) \\ \uparrow \{\pm \text{Id}\} & \nearrow & \uparrow & \nearrow & \uparrow \\ \{\pm \text{Id}\} & \longrightarrow & \text{SL}(2, \mathbb{R}) & \longrightarrow & \text{PSL}(2, \mathbb{R}) \end{array}$$

LEMMA THE INDUCED HOMOMORPHISMS HAVE

$$p_{\mathbb{C}} : \text{PSL}(2, \mathbb{C}) \xrightarrow{\cong} \text{PGL}(2, \mathbb{C}) \quad p_{\mathbb{R}} : \text{PSL}(2, \mathbb{R}) \xrightarrow[\text{two}]{\text{INDEX}} \text{PGL}(2, \mathbb{R})$$