

(1) TRICHOTOMY: IF $f: U^* \rightarrow \mathbb{C}$ HOLOMORPHIC THEN THE MISSING POINT z_0 IS

- (1) REMOVABLE SINGULARITY
- (2) POLE OF ORDER $0 < N < \infty$
- (3) ESSENTIAL SINGULARITY.

(2) CASORATI-WEIERSTRASS THM

OR "ESSENTIAL SINGULARITIES ARE VERY SCARY" THM
THM: SUPPOSE $f: U^* \rightarrow \mathbb{C}$ HOLOMORPHIC AND HAS AN ESSENTIAL SINGULARITY AT z_0 . SUPPOSE $\varepsilon > 0$. SET $B^* = B(z_0, \varepsilon) - \{z_0\}$. THEN $f(B^*)$ IS DENSE IN \mathbb{C} .

PROOF: WE PROVE A CONTRAPOSITIVE. SUPPOSE $f(B^*)$ NOT DENSE. SO HAVE $w \in \mathbb{C}$ AND $\delta > 0$ SO THAT $f(B^*) \cap B(w; \delta) = \emptyset$. DEFINE $g: B^* \rightarrow \mathbb{C}$ BY

$$g(z) = \frac{1}{f(z) - w}. \quad \text{SO } |g(z)| = \frac{1}{|f(z) - w|} \leq \frac{1}{\delta} \text{ IS BOUNDED.}$$

SO g HAS REMOVABLE SINGULARITY AT z_0 . LET $G: B \rightarrow \mathbb{C}$ BE THE HOLOMORPHIC EXTENSION. SET $N = \text{ORD}(G, z_0)$ NOTE $N \geq 0$. FACTOR TO FIND $G(z) = (z - z_0)^N H(z)$ FOR $H: B \rightarrow \mathbb{C}$ HOLOMORPHIC AND $H(z_0) \neq 0$. SO, ON B^*

$$(z - z_0)^N H(z) = \frac{1}{f(z) - w} \quad \text{THUS } f(z) = w + \frac{1}{(z - z_0)^N H(z)}$$

NOTE $K = \frac{1}{H}$ IS HOLOMORPHIC ON SOME (SMALLER) $B' \subset B$. SO $f(z) = w + \frac{1}{(z - z_0)^N} K(z)$. SO $\text{ORD}(f, z_0) = -N$

AND f HAS A POLE OF FINITE ORDER (TOS, ZERO). \square

(3) MEROMORPHIC FUNCTIONS: WE DEFINE $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ TO BE THE EXTENDED PLANE. WE WILL GIVE $\hat{\mathbb{C}}$ ADDITIONAL STRUCTURE LATER. FIRST A (COMPLICATED) DEFINITION! [SORRY!]

DEF: SUPPOSE U IS A DOMAIN. SUPPOSE $h: U \rightarrow \hat{\mathbb{C}}$ IS A FUNCTION. SUPPOSE $P(h) = h'(\infty)$ IS ISOLATED IN U . SUPPOSE $h|_{U \setminus P(h)}$ IS HOLOMORPHIC. SUPPOSE FOR EVERY $p \in P(h)$ WE HAVE $\varepsilon > 0$ AND $k > 0$ SO THAT SO $B = B(p, \varepsilon) \subset U$ AND $h|_B$ HAS A POLE OF ORDER k AT p . THEN WE CALL $h: U \rightarrow \hat{\mathbb{C}}$ MEROMORPHIC IN U . WE CALL $P(h)$ THE SET OF POLES OF h .

EXAMPLE: $f(z) = \frac{1}{z}$ IS MEROMORPHIC IN \mathbb{C} .

LEMMA: SUPPOSE $f, g: U \rightarrow \mathbb{C}$ ARE HOLOMORPHIC. SUPPOSE NEITHER f, g VANISHES IDENTICALLY IN U . THEN $h = f/g$ IS A MEROMORPHIC FUNCTION IN U WITH

$$Z(h) = \{z_0 \in U \mid \text{ORD}(f, z_0) > \text{ORD}(g, z_0)\}$$

$$P(h) = \{z_0 \in U \mid \text{ORD}(f, z_0) < \text{ORD}(g, z_0)\}$$

ALSO, FOR ALL $w \in U$ WE HAVE

$$\text{ORD}(h, w) = \text{ORD}(f, w) - \text{ORD}(g, w).$$

PROOF: FIX $z_0 \in U$. SET $\alpha = \text{ORD}(f, z_0)$, $\beta = \text{ORD}(g, z_0)$ FACTOR TO OBTAIN $f(z) = (z - z_0)^\alpha F(z)$

$$g(z) = (z - z_0)^\beta G(z)$$

WITH $F, G: U \rightarrow \mathbb{C}$ HOLOMORPHIC, $F(z_0) \neq 0$

$$G(z_0) \neq 0$$

SO $H = f/g$ HOLOMORPHIC NEAR z_0 .

WE NOW DEAL WITH CASES AS

① $\ell = 0$ OR

② $\ell > 0$ AND $k > \ell$, $k = \ell$, OR $k < \ell$.

IN ALL CASES FIND $h(z) = (z - z_0)^{k-\ell} H(z)$ NEAR z_0 . II.

EXAMPLE: $p, q \in \mathbb{C}[z]$ POLYNOMIALS. THEN $h = \frac{p}{q}$ IS A RATIONAL FUNCTION AND IS MEROMORPHIC IN \mathbb{C} .

WEIERSTRASS PRODUCT THM: IN FACT (FOR DOMAINS $U \subset \mathbb{C}$) WE HAVE A CONVERSE TO THE ABOVE:
ALL MEROMORPHIC FUNCTIONS ON U ARE RATIOS OF
HOLOMORPHIC FCNS. THIS IS BEYOND THE TECHNIQUES
OF THIS MODULE

④ PATCHING, FACTORING.

LEMMA: SUPPOSE $f: U \rightarrow \hat{\mathbb{C}}$, $g: V \rightarrow \hat{\mathbb{C}}$ MEROMORPHIC.

SUPPOSE $f|_{U \cap V} = g|_{U \cap V}$ (AND $U \cap V \neq \emptyset$).

THEN THERE IS A UNIQUE MERO. EXTENSION OF
 f, g TO $h: U \cup V \rightarrow \hat{\mathbb{C}}$.

PROOF: PROVE $P(f) \cup P(g)$ ISOLATED IN $U \cup V$
 $\cup (f \cup g)^{-1} \{ \infty \}$ " " $U \cup V$.

NOW PATCH $f|_{U - P(f)}$ WITH $g|_{V - P(g)}$. II.

LEMMA: SUPPOSE $h: U \rightarrow \hat{\mathbb{C}}$ IS MEROMORPHIC. SUPPOSE
 $z_0 \in U$. SET $n = \text{ORD}(h, z_0)$. THEN HAVE $h: U \rightarrow \hat{\mathbb{C}}$

MEROMORPHIC SO THAT $H(z_0) \neq 0, \infty$ AND

$$h(z) = (z - z_0)^N H(z_0) \text{ IN } U.$$

PROOF: APPLY REMOVABLE SING. THM TO $(z - z_0)^{-N+1} h(z)$.
NON APPLY HOLOMORPHIC FACTORING. \square