

Please let me (Saul) know if any of the problems are unclear or have typos.

Exercise 9.1. Prove that \mathbb{C}^\times and \mathbb{D}^\times are homeomorphic. Prove that they are not conformally equivalent. \diamond

Exercise 9.2. Suppose that $f: U \rightarrow \mathbb{C}$ is holomorphic and injective. Set $V = f(U)$. Prove that V is a domain. Prove that f is a conformal equivalence between U and V . [The proof of this is in the lecture notes, spread across several sections.] \diamond

Exercise 9.3. Prove that $\hat{\mathbb{C}}$, the extended plane, is homeomorphic to S^2 , the unit two-sphere in \mathbb{R}^3 . \diamond

Exercise 9.4. Suppose that a, b, c , and d are complex numbers with $ad - bc \neq 0$. Let $f(z) = (az + b)/(cz + d)$ be the resulting linear fractional transformation. Express f as a composition of additions A_w , multiplications M_w , and inversions V . [Careful: the proof splits into cases.] \diamond

Exercise 9.5. Suppose that $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is meromorphic. Prove that f is *rational*: a ratio of polynomials. \diamond

Exercise 9.6. For each of the following choices of $T \subset \hat{\mathbb{C}}$ find all automorphisms of $\hat{\mathbb{C}}$ preserving T setwise. Also, determine the isomorphism type of the resulting group $\text{AUT}_T(\hat{\mathbb{C}})$.

a) $T = \{\infty, 0, 1\}$.

b) Fix $n > 2$, set $\omega = \text{EXP}(2\pi i/n)$, and take $T = T(n) = \{\omega^k \mid k \in \mathbb{Z}\}$.

c) Set $\omega = \text{EXP}(2\pi i/3)$ and take $T = \{1, \omega, \omega^2, \infty\}$. \diamond

Exercise 9.7.

- Prove that $\text{U}(1, 1)$ is a group under matrix multiplication.
- Prove that every element M in $\text{SU}(1, 1)$ has the form

$$\begin{pmatrix} a & b \\ \bar{b} & \bar{a} \end{pmatrix}$$

for some $a, b \in \mathbb{C}$.

- Prove directly that $\text{PSU}(1, 1)$ is isomorphic to $\text{PSL}(2, \mathbb{R})$. \diamond