2005-11-11 LECTURE 16 SAVL SCHLEIMER MASBS

(1) IDENTITY THEOREM

THM: SUPPOSE U IS A DOMAIN. SUPPOSE A CU HAS AN ACCUMULATION POINT IN U. SUPPOSE GIA=glA.

THEN f=q.

PROOF NOTE $f \cdot g : U \rightarrow C$ IS HOLOMARPHIC. SO EITHER $f \cdot g \equiv 0$ or $\geq (f \cdot g)$ ISOLATED IN U. BUT $A(\geq (f \cdot g))$ SO $f \cdot g \equiv 0$ SO f = g.

REMOVING REMOVABLE SINGULARITIES

SUPPOSE X IS A SET. SUPPOSE YOK. SUPPOSE & IS
A FUNCTION ON Y, F IS A FUNCTION ON X.
IF FIY = I THEN WE CALL F AN EXTENSION of f

IF X,Y HAVE STRUCTURE THEN WE WIGHT HAVE

"CONTINUOUS EXTENSIONS" OR "HOLD MORPHIC" OR ETC.

EXAMPLE: IF U, X DOMAINS, f: N-OC, g: V-OC
HOLONORPHIC, FIUNY = gluny, AND re)= (fe) = EN
(gle) = EV
THEN PATCHING LEMMA TELLS US THAT h IS A

THIN [REMOVABLE STUCYLARTY] SUPPOSE UCO IS ADMINITY.

SUPPOSE 7 EU SURDAE NX = U-12) SUPPOSE

SUPPOSE ZEV. SUPPOSE N' = U- {Z). SUPPOSE

F: N' -> P IS HOLOMORPHIC. THE FOLLOWING ARE

EQUIVALENT:

(1)
$$f$$
 HAS A HOLOMORPHIC EXTENSION TO U

(2) f "CONTIDUOUS"

(3) $|f|$ II BOWNED IN \mathbb{R}^{N} FOR $B=\mathfrak{I}(\mathbb{R}_{0},\mathbb{C})$, FIR SOME \in 70

(4) \mathcal{L}_{M} ($\mathbb{R}^{2}-\mathbb{R}_{0}$) $f(\mathbb{R})=0$. NON-EXAMPLE $f(\mathbb{R})=\mathbb{R}_{0}$ DIES NOT HAVE A HOLOMORPHIC EXTENSION TO ALL OF \mathbb{C} .

(4) \Re (1): WE DEFINE $h: \mathbb{N} \to \mathbb{C}$ BY

$$|f| = \int_{\mathbb{R}^{2}} (\mathbb{R}^{2}-\mathbb{R}_{0})^{2} + \mathbb{R}_{0} = \mathbb{R}_{0}$$

(4) \Re (1): WE DEFINE $h: \mathbb{N} \to \mathbb{C}$ BY

$$|f| = \int_{\mathbb{R}^{2}} (\mathbb{R}^{2}-\mathbb{R}_{0})^{2} + \mathbb{R}_{0}$$

(2) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(3) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(2) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(2) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(3) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(3) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(3) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(4) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(5) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(6) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(7) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(8) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(9) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(10) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(11) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(12) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(3) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(4) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(4) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(5) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(6) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(7) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(8) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(9) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(10) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(11) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(12) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(13) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(14) $f(\mathbb{R}^{2}) = \mathbb{R}_{0}$

(15) $f(\mathbb{R}^{$

DEDUCE THAT (2-20)12. 9(2) IS THE DECTRED HOLOMORPHIC EXTENSION of f TO ALL of U.