2025-11-05 LECTURE 14 SANL SCHLEIMER MASSO
(1) COROLLARTES (1) an INDER of CHOICE of RE(0,Ro). (3) $f^{(n)}(z_0) = n! \cdot a_n$ (3) $\frac{1}{R_0} > \lim \sup_{n \to \infty} \sqrt{ a_n }$ (2) COROLLARTES (1) CORRECTED FROM LETURE.
SO: IF U= O THEN Ro = 10 AND Z' UN (2-2) CONVEGES
IN ALL of C.
@ THE CONVERSE TO EVERYTHING [MORERA'S THM]
COROLLARY: SUPPOSE f: U -> C CTS AND INTECRATES TO
ZERO ABOUT TRIMIGLES. THEN of IS HOLOMORPHIL.
PROOF: INTEGRATES TO ZERO ABOUT TRIANGLES IMPLIES
hus Privitives in discs. Suppose & defined in 5=b(e_r)
AND F'=f. SO F IS HOLOMORPHIC. SO F IS AWAITTIC.
So F'= Is analytic so f Is holomorphic.
3) THE FUNDAMENTAL THIN OF COMPLEX ANALYSIS
[FOILOWING BERS]
THEOREM: SUPPOSE THAT UCC IS A DOMAIN. SUPPOSE
THAT f: U-> @ IS CONTINUOUS THEN THE FOLLOWING
ARE EQUIVALENT.
Of IS HOLOMORPHIC
(2) & INTEGRATES TO PERO ABOUT TRIANGLES.
(3) & HAS PRIMITIVES IN DISCS CLOSED
(4) I INTEGRATES TO ZERO ABOUT CONTOURS IN DISCS
(5) " " " ONE FOUNDARIES
© "REGIONS

FOR ALL ZEW, RCRO, WEB=B(Z,R)
$$f(w) = \frac{1}{2\pi i} \int_{B} \frac{f(z)}{z-w} dz$$

(B) of IS ANALYTIC AND, IN B=B(z,R) [AS ABOVE]
$$f(z) = \sum_{i=1}^{n} a_{i}(z-z)^{n} \quad \text{for} \quad a_{i} = \frac{1}{2\pi i} \int_{3B} \frac{f(z)}{(z-z)^{n}} dz$$

(4) ZEROS SURPSE $f: U \rightarrow C$ HOLOMORPHIC. $Z_0 \in U$ IS

A ZERO of f IF $f(z_0) = 0$.

DEF: SAY f VANISHES IDENTICALLY IN U IF f(z) = 0FOR ALL z IN U. IF HOT, SAY f IS NOT IDENTICALLY

ZERO IN U.

DEF: SVIPOSE f: U -> C HILOMORPHIC. SUPPOSE ZOE U.

DEF: SUPPOSE $f: u \rightarrow C$ HOLOMORPHIC. SUPPOSE $z_0 \in V$.

SUPPOSE $f(z) = \sum_{n=1}^{\infty} q_n (z_n - z_n)^n$ is the series expansion of f at z_0 .

IF ALL QN = O SAY & VANISHES TO INFINITE

ORDER AT 20
IF HOT, SET N= MIN $\{n\in\mathbb{N}\mid q_n\neq 0\}$ AND SAY $\{n\in\mathbb{N}\mid q_n\neq 0$

NOTE 20 IS A ZERO of & IFF N>0.

E VANISHING:

LEMMA: SUTTOSE & VANISHES TO INF. ORDER AT ZO

THEN & VANISHES IDENTICALLY IN U.

TROOF SUPPOSE ZIEW. FIX A PATH TO: [0,1] -> U WITH 8(0) = 20, 0(1) = 2,0

EXERCISE: FIND POINTS Zo=wo, w, ... wk, ... wh = Z, IN THE IMPLE of 80 THAT FOR ALL R

(i) | wk+1 - we | < E

(ii) B(we, E) C U.

LET AR = (akn) NEW BE THE COEFFICIENTS of

THE SERVES EXPANSION of f AT WE. SO AO = O. + VANISHES IDENTICALLY SUTPOSE A = 0. THUS

IN B(weig). So of VANISHES IDENTICALLY IN A HEIGHBOURHOOD of water. So $f^{(m)}(w_{en}) = 0$ FOR

ALL n. 20 April 0. BY JUDICTION AN = 0.

THUS $f(\omega_N) = f(z_i) = 0$.

