2025-10-29 LECTURE 11 MASBS SAUL SCHLEIMER

1) A VERSION of CAUCHY'S THEOREM

THEOREM: SUPPOSE U IS A DOMAIN SUPPOSE fiu-C

IN DISCS. SUPPOSE I'E B,(U) IS PIECEWISE C!

THEN $\int f dz = 0.$

COROLLARY: U A DOMAIN, & HOLOMOTEPHIC, TEB, (4)

PIECEWISE C! THEN I do do ... "I STEEP TO ZERO ABOUT "BOUNDARIES" "

PROOF: SUPPOSE $d = \sum_{n=0}^{\infty} q_n \sigma_n^2 \in C_2(u)$ HAS $\partial d = \Gamma$. NITE D = U IMAGE(σ_n^2) IS COMPACT AND

IN U. SO HAVE ETO SO THAT N(D,E) = E-NEIGH

LIES IN U. PICTURE

BY LEMMA HAVE N >> 0 SO THAT

ALL STMPLICES IN SUBⁿ₂(d)

HAVE JUME WITH DIAMETER

LESS THAN C

OTHER LEMMA GIVES SUB, (1) = SUB, (0d)

- 2000 (1) 6 B (4)

= 2 SUB" (d) & B, (u).

BY LINEARITY IN DOMNATH []

BY LINEARITY IN DOMATH $\int f dz = \int SUB_{in}(r)$

NOW WE CAN STRATGHTEN: SUPPOSE SUB," (d) = Z 62. SO DIAM (IMAGE (O.)) - 2. SO IMAGE (O.) C B (Ox (s), E) IS CONTAINED IN U. SET TK = STR (GE). SO TE HAS IMPLE IN B (5, 15), E). SO IMPLE (TE) CU. SET d'= I Tu = STR (SUBN(d)). SO d'& Celu). SET I'= dd' SO I'= Z'OTE. BY HYPOTHESIS $\int_{\Gamma} f dz = \sum_{i=1}^{n} \int_{\partial T_{i}} f dz = 0$ So SUFFICES TO PROVE $\int_{\Gamma'} f dz = \int_{SUB_{+}^{n}(\Gamma)}$ FOR ANY EDGE 1 of SUB! IT) HAVE 11'= STR.(11) IN I'

NOTE DIAMETER of TIME of 11 IS LESS THAN E.

SO SAME HOLDS FOR 11'. PILTURE SO N-N' IS CLOSED CONTOUR

IN A DISC. SO $\int_{N-N'}^{1} dz = 0$.

E-DISC

THUS:
$$\int f dz = \int f dz = \int f dz = 0$$
. II

EXAMPLE: NOTE $f(z) = \frac{1}{2}$ IS HOLOMORPHIC IN

CY. NOTE $\delta: [0, z\tau] \longrightarrow C^{\times}$, $\delta(0) = e^{i\delta}$ IS A

CLOSED CONTONR $[\delta \in Z, (C^{*})]$ NOTE $\int_{C} f dz = 2\pi i + 0$.

SO: Y JS NOT A BOUNDARY. SO H, (CX) = O. I

2 CAUCHY'S THY, SO FAR

COROLLARY: SUPPOSE THAT U IS A DOMAIN.

SUPPOSE THAT fix—> C IS CONTINUOUS.

THEN EACH of THE FOLLOWING IMPLIES THE MEXT:

(2) f integrates to zero about triangles

(3) f has primitives in discs in u

(4) f integrates to zero about closed contours in discs in u

(5) & INTEGRATES TO ZERO ABOUT NULL HOMOLOGOUR CONTOURS IN U.

 $(4) \rightarrow (3)$ ARE EASY (OR AT LEAST, NOT HARD!)

RMK (1) => (1) IS DIFFICULT! WE'LL RETURN TO THIS.