2024-10-31 MA3F1 SAUL SCHLEIMER LECTURE IS 1) CORDLUARIES of NO RETRACT THM. TABLECLOTH THEOREM: SUPPOSES f: 102-> 102 HAS fis'= Ids'. THEN f is surjective. PERRON-FRUBENIUS (n=3): SUPPOSE ACMAT33(R) HAS aij > 0 FOR ALL i.j. THEN A HAS AN EIGENVALUE >>0 AND A X-EIGHNVECTOR J WITH U; > 0 FOR ALL i. THE NEXT RESULT REQUIRES MORE WORK TO PROVE FUNDAMENTAL THIM & ALGEBRA SUPPOSE Q EQ[2] IS
A NON-CONSTANT POLYNOMIAL. THEN THERE IS SOME Z.E C SO THAT Q(Z.)= O. [THAT IS, Q HAS A ROOT.] (2) HULL HOMOTOPIES: SUPPOSE fix-Y IS GIVEN WE SAY I IS WILL-HOMOTOPIC IF fre [A CONSTANT MAP] DEF: A POINTED MAP f:(X,70) -> (Y,71) IS WULL HUMOTOPIC REL BAGE POINT IF THERE IS A HUMOTOPY F: X · I - Y WITH fo=f, f,=e [elx)=j. FOR] AND Fixont) = you THAT IS fre. TROPOSITION: FOR X=5' THE FIRST IMPLIES THE SECOND. PROOF: SUPPOSE FISINITY IS THE GIVEN HOMOGOPY DEFINE G: IXI -> Y BY

DEF h: I -> Y BY h(t) = F(x,t). FOR P(S) = exp(enis)

PICTURE: ST top George So butid H: IxI -> Y FINALLY DEFINE K:S'xI -> Y $(z,t) \longrightarrow \mathcal{L}\left(\frac{\log(z)}{z + i}, t\right)$ fr 6 ... f11) THIS IS THE DESIRED POINTED HOMOTOPY. DEFINE PA: S'-S' FT Pe(2)=24. COROLLARY: PR=PR IFF k=1.

SO: PR IS HULL HOMOTOPIC IFF R=0. 3 PROOF SKETCH of FUND. THM of ALGEBRA.

Suppose, for a contradiction, that has no root. So $Q(C) \subset C - \{0\}$. For refr., Define $C_R = \{2 \in C \mid i3i = R\}$ Suppose $Q(z) = a_1 z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$, with

 $a_n \neq 0$. Since it does not change the roots we may divide and so assume $a_n = 1$.

Now tick R>70 so that $R^n >> \sum_{k=0}^{n-1} |a_k| R^k$

In fact by straight-WITH THIS CHUICE of R -LIHE HOMOTOPY. Q | CR: CR - PO} SO: of IS Honorofic IS Homotopic to 10 pn: S' -> C-20] $\Xi \longmapsto \Xi_{\nu}$ g: CR → R-203 SO RICE IS NOT HULL-HOMOTOPIC IN C-803. HOW CONSTDER THIS IS A HULL-HOMUTOPY F: CR*I -> C- {0} of QICRx 207. (z,t) --- Q(t.z) THIS IS THE DESIRED CONTRADICTION [] PICTURE: 4 EVEN / ODD. SUPPOSE XIT ARE SUBSETS of VELTOR SPACES. SUPPOSE X Y ARE INVARIANT UNDER HEGATION. TEF: SAY FIX-Y IS +(-x)=+(x) f(-x) = -f(x)

EXA	M	E	<u>.</u> ع	•		<u>(</u>)		· ~	١	: 1	R	· -	→	V	ر ا		7		•	0 1	ÞD	>						
																R'											0		
(4)	P-	e.		5 5 2	۱ <u>.</u> ۱		> ∘	5	l k	}	Ţ		{	€ (C	Y > D	e D	7	}	I	F		k	· •	{	0	?	W/1	~	1 2
																													٠